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FOREWORD

This document represents the second progress report on the NASA research
grant NGR 44-001-027. The report is divided into eight parts. A summary of

these parts is presented below in order to indicate the gemeral nature of each

section,

Part I is a report on the research outlined in Part III of the first
progress report. In general, it deals with the problem of fitting a nonlinear
function with constraints on the parameters. Numerical examples are presented
in order tov clarify parts of the development so that application of the prin-
ciples can be made.

Part II is a most significant development in the areaof constructing
mathematical models with a limited amount of data. It considers the form of the
function selected to represent the general response of the dependent variable
over the applicable range of the independent variable. By restricting the
first order terms of the variables to the preselected function, it is possible
to determine a curve with more parameters than data points. 3y repeating this
process for each higher order term, it is possible to expand a single equation
to a large number of terms, using the least squares criteria for parameter
selection.

Part III is a development of a computer program for use in evaluation of
the cost estimating relationship developed in Part IX of this report. The
program was used to checkout and evaluate the overall consistency of the cost
equation, By utilizing three dimensional co-ordinate paper tc plot the results,
it was possible to judge the behavior of the CER over a rathev extended range.
The results produced by this program tend to support the approach developed in

Part 1I,




Part IV is a report on the deveiopment of a dynamic programming algorithm
for solution of problems that were discussed with another NASA cost research
contractor, This is an applied research problem which provided the opportunity
to introduce a new application of dynamic programming as well as contribute
to the technology in the cost research area, The basic problem was the com-
bination of individual predictors of the same cost by weighting each term so as
to minimize the error sum of squares,

Part V is the development of a methodology for the determination of run-
out costs for partially completed subsystem. The particular approach was to
use the Gemini data in a general manner in order to predict the run-out of
Apollo subsystems. This study produced a number of tangential investigations
as well as a computerized algorithm for determining run-out costs, The applied

‘ research associated with this problem was essentially initiated and completed
within this reporting period, This was in response to a specific problem
suggested by NASA/MSC/LRP,

Part VI is a discussion of the present status of the research which is being
conducted in the area of quantification of expertise, This part of the report
provides a brief history of the area and reports on current progress and ques-
tionnaires developed for iritial investigations,

Part VII is of the same general nature as Part VI of the first progress
report in that it represents research in an area related to general cost models,
More specifically, it develops a concept for sophisticated production cost
models which consider the recycle, cleanup, closed loop and recycle with a
primary loss cases,

Part VIII is the informal consulting memoranda generated during the time

‘ period covered by this report,
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PART I

CONSTRAINED ESTIMATION IN NONLINEAR MODELS:

A MATHEMATICAL PROGRAMMING APPROACH.

By
William P. Cooke

For

Industrial Engineering Department

Texas ASM University
May 1966




INTRODUCTION

The problem of "estimation of parameters with constraints for models which

are nonlinear in the parameters' was discussed in Part III of Progress Report I

for NASA Grant SC-NGR-44-001-027, December, 1965. 1In that report the general
problem was presented, the possible approaches to its solution were discussed, a
bibliography was included, and a connection was made of this pure research prob-
lem with the specific problems anticipated in the construction of cost models.

This section of this report will present some of the theoretical results
obtained, a discussion of a promising method of attack on the estimation problem,
and a specific example in which a solution was obtained.

Only the estimation problem has been investigated in detail; the question of
properties of the estimates being deferred until the general estimation theory
has been adequately developed. It is clear, however, that the estimates should
be either "best linear estimates" (where "best" means minimum mean-square error)
or estimates which depart from that criteriom only slightly. In fact, the
method of estimation has been formulated in a manper designed to insure that
property or some extension of it.

Therefore, while estimation only is discussed in this report, the question

of properties of the estimators has actually been considered concurrently.




THE GENERAL CONSTRAINED NONLINEAR PROBLEM

The objective is to estimate the parameter vector 6 in the function
y = £ (X; 0), where X = (xl,..., xk) is a vector of observable variables, y is
observable (the dependent variable), ¢ = (91""’ ep) is a vector of fixed but
unknown parameters, and 9 is restricted (constrained) to a certain region of
ol (p - dimensional Euclidean space).

The problem as stated above is the most general of estimation problems.

No specification of the function f or of the nature of the constraints on 6

is made. 1In fact, all problems of parameter estimation (based on sample observa-
tions) for which there exist standard methods of solution are simply special
cases of this general problem.

For example, if f (X, ©) is lipear in the parameters 6 and © 1is uncon-
strained, we have the standard multiple regression problem. If f (X, 0) is
linear in © and © is constrajned by linear inequalities while each element of ©
is required to be positive, the estimation problem can be formulated as a
quadratic programming problem.

The case were f (X, ©) is nonlinear in © but O is unrestricted has been
extensively investigated and various iterative techniques have been proposed for
its solution. As with any iterative technique however, the choice of an
initial vector GI is critical. This same difficulty has arisen in the problem
where, in addition to £ (X, ©) being nonlinear, © is constrained. This last
problem is the main topic to be discussed, but in the discussion of its solution
we also are able to propose a possible criterion for an initial 67 in the un-
restricted case.

Before proceeding tothe theoretical basis for solution to the problem, let
us first consider the problem in somewhat less general language so that the

reader with a limited mathematical background may get a "feel" for the problem.
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As a vehicle for discussion, let us formulate a simple cost estimation
problem. Suppose that it is desired to estimate the cost of a certain spacecraft
subsystem and we make the assumption that some mathematical function of the two
variables x, (subsystem weight) and x, (number of flight functiomns) adequately
describes cost. We might go a step further and say that we know the form of the

function is y = xl61 + xz62

» where y represents cost, and 8, and 9, are
constants (parameters). Then, if 6, and 8, are known, we may simply "plug in"
the values of X, and x, in order to know the cost y exactly for that pair of
values x, and X, . In other words, if 81 and 9, are known, there is no problem.
We do not estimate costs, we know them,

Unfortunately one is rarely in this ideal situation. In fact, we consider
ourselves quite fortunate to be able to specify the form of the function.
Suppose, however, that we can, but that we do not know 91 and 8,. Suppose
further that our experience tells us that both 6, and 8, must be positive con-
stants. We now have a constrained estimation problem, for what we would like
to do is the following.

We have a little bit of knowledge about the parameters €, and 92 (thev are
positive). We also have some historical data pertaining to costs of subsystems
of this type. That is, for certain pairs (x,, x,) we have observed the actual
cost y for this subsystem. For example, when weight (x,) was 9,000 pounds and
number of functions (x,) was 5, cost (y), was known. Obviously if our functional
form is correct, and if we know &, and ©,, then the actual observed y would have
been equal to (9,000)el + (5) 92,

We now propose to use this data as shown below. Suppose we have three such

sets of data. We form the following three equations:

- 81 0
01 9
Y= X, tHx,,02

8

)
Y3= e 3+ x,52 ’
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where (xll’ x21) represents the known x;, and x, for observed cost y,, (x;,, X32)
are associated with Yy etc. We ask ourselves the question: '"What two positive
numbers 6, and 8, satisfy these three equations?". If there are two such
numbers, they might be determined by inspection, or "trial and error", or by
some "sophisticated" mathematical technique. 1In fact we are certain that
eventually, by some means, we will find those two positive numbers.

Usually though, the situation is not quite so clearly defined. For one
thing, the form of the function might be only an approximation to the actual
cost function (in fact, it usually is an approximation). Then there will not
exist any pair of numbers eland 92 that satisfy the three equations exactly,
and a "trial and error" method would have us "trying and erring" indefinitely.

Another, though not so severe, difficulty is that the x's or the y might
not be exactly known. Usually the x's will be known exactly for all practical
purposes, but y itself might only be an estimate or, more likely, impossible to
determine exactly (what is the exact cost of solder-joint number 24377).

After considering the above points we conclude that it is virtually
impossible to ever really determine 8, and 8,, so the best we can hope to do
is to estimate them in such a way that the estimated value is expected to be
very near the actual value, which in turn will enable us to estimate costs
adequately. We are now at the heart of the problem.

There are standard statistical techniques which enables us to estimate
parameters and say something about how good these estimates are if the problem
is linear, that is, if y has a form like y = 8; x; + 6, x, or y = 8; + 8,x, x,
instead of being nonlinear, as y = xlel + x292 ("linear" and '"nonlinear" refer
to the 6's, not the x's). Even if the problem is nonlinear, it is usually
approached by first approximating y by a linear function and then using a
response~surface technique on this linear approximation (this is not always

satisfactory).




However, the problem of the constraints now enters. Suppose that 91 and 92
are very nearly zero, for example, that their actual values are 8, = ,002 and
6, = .001. Suppose further that because of the fact that we only have observed
a few points, and at least one observation is somewhat inaccurate, our standard
procedure tells us that the estimate of 91 is - .0003 and of 6, is .0012.
Immediately this is an unuseable result, for we know that the actual 6; must
be positive. One could in fact say that 6; = 0 is a better estimate than the .
negative one we obtained. But is 8,= 0 the best estimate?

The above discussion of an elementary constrained estimation problem was
intended to éoint out at least a few of the reasons why the general problem is
being considered. It should also establish a relationship between the purely
academic research being carried out under the grant with the specific problem
of cost estimation. If a nonlinear cost equation is specified, and if some
information is available about the location (or size) of the constants in the
equation, then the estimation problem is a special case of the general problem

we now attempt to solve.

FORMULATION OF THE ESTIMATION PROBLEM AS

A MATHEMATICAL PROGRAMMING PROBLEM

In the general problem originally proposed, we wish to estimate the para-
meter vector © in the function y = £ (X, ©¢) when 0 is constrained to some
region of Euclidean space. Suppose for the moment we regard 9 as unrestricted
and consider only the unconstrained problem.

Let us make the assumption that while we cannot observe y exactly, we are
able to observe

vy =f (%55 0) + e,

where y; is the observed response corresponding to an input vector
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X = (Xli? X seres xki) and e; is a random error whose expectation is zero and
whose fixed but unknown variance is 02.
We now consider the set of observed responses
yi=f(Xi; 0)+ei,i=1, 2, ..., 0,
a set of n data-points, or n observations. This set can be described compacty

in matrix notation as

Y=U(X; 9 +e,

where
Y=y}, U(X;0) = [f X;; 0} ,e=
Yn f (X4; O

We further assume that the ey's are independent with common variance 0?

A standard statistical procedure for estimating © is least-squares; that
is, find that vector © which minimizes the sum of squares of the "residuals", or
ej's. Under the assumptions stated, such solution is a best linear unbiased
estimator for O, in the sense of the well-known Gauss-Markoff Theorem.

In matrix terms, the problem is to minimize

ele=[y-u & 9Ol'ly-v X; &) ,
which is a function only of the p-vector O, since all the y's and x's are
observed (known) values.

This problem has a very simple solution if f (X; ©) is linear in the 8's.
When that is the case, e'e is a quadratic form in ©, which, when each partial
derivative of e'e is set equal to zero, yields a system of simultaneous linear
equations in 0. (Recall that such a system is a necessary condition for the
existence of a minimum).

Now, if £( X; ©) is not linear in ©, then e'e will not be a simple quadratic
form in 6, and our system of equations representing the necessary condition for

a minimum will usually be quite difficult, if not impossible to solve analytically.
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A numerical solution of such a system is possible, but usually not practicable.
. One resolution of this difficulty, which is a well known and well documented

approach, is the "linearization" of f(X; © using a first-order Taylor's Series
expansion about some particular O, say 0%, and then minimizing e'e, where
U (X; ©) is replaced by U* (X; 0) based on the approximation. The well known
method of "steepest ascent”, an iterative technique, is ordinarily employed to
accomplish the minimization. It is. known to converge to a solution if the
initial vector 07, to begin the first iteration, is in the neighborhood of the
actual solution. Obviously some criterion is required to assure a good 01 and
various conditions on and modifications of the technique have been propesed.
A good discussion of these modification is found in references [1] and [2].

Of course a Taylor's Series approximation is not the only method of
approach to solving a problem of this type. Another procedure, which is knowm

. to converge, has been given by Dr. H. 0. Hartley in reference [3]. Our suggested

approach in this report will employ the Taylor's Series approximation techmique,
but in subsequent research we will explore the possibilities of using Dr.
Hartley's procedure as applied to the constrained estimation problem.

The problem of constraints on ©is not comsidered in the above discussion.
If O is restricted, then the approach we suggest is a modification of the Taylor's
Series approach to the unconstrained problem, with a mathematical programming
rather than a "steepest ascent" method for the solution. The theory follows.

Consider now the point o*' = [61*,...,9P*] in the (constrained) ©- space.
We shall write a Taylor's expansion of f (X; ©) about this point, neglecting
terms of order 2 and higher.

Form the equation

(X300 2 (X500 + I (8- 050 £; (X3 0%) ,

®




where

£ (x4 6%) = aof (g4; @)
303 o =o* .
Then
£ 50 | |fKse%) £(X;5e*) ...f) (X; 0% 1
U(X;6)= |f (Xz.; )y = |f (Xzf 0*) fz(xzf 6*) ...f (Xzf 6™} le, "
£(X, ; 0) £ (R 089 £ (%pi 0%) .ouf, (K3 0% Jop -
or we have approximated U (X; ©).
Let
fe x5 o0 (X3 69 £(X); 6%)... £, (X); 64)]

[}
h
[
”~~
>

A= |f (X,; 0] , B 25 O £2(X,; o%)... £, (X,5 &%)

. * .

Lf Rys 0% £ (g5 00 £2(Xp; 08)... £ (K5 o0)]
8, ~ 6} rel g;
0 - 0*= ezjeg » 0= 6, o*= ;
6p ~ 6p* p ep* -

Notice that all the elements of A and B are known, depending only on the
known X's and the chosen 0%,
Then U (X; 8) 2 A+ B (0 - 0%) , and we wish to minimize

e'e = [Y- A -Bg + Bo*] ' [Y - A - BO + Bo*]

[(¥ - A+ BO%) - BO] ' [(Y - A+ Bo*) - Bo]

[(@ -A" +06%'B')-8"B'"] [(Y - A + BO*) - BO]

(¥' - A" +06%'B") (Y - A + Bo*) - (Y' - A'O%'B') (BO)
-0'B (Y-A+BO*) +0'B'BO
=K - [2(Y" - A" + 06%'B') BO -0'B'BO] ,
where K = (Y - A' +6%' B' ) (Y - A + B9%) is a known constant.
Then minimizing e'e is equivalent to maximizing z, where

z =[2 (Y -A" +0*B') BlJo +0'( - B'B) 0.
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If there are no constraints on 0, then this is the usual (references [1] and
[2]) Taylor's series approach, except the function z has been written as a quadra-
tic form in O, while usually a quadratic form in (@ - g*) is used in the references
[1] and [2]. Our form of z is important from a mathematical programming viewpoint,
however. Note that we could perhaps simplify the equation slightly by maximizing
z/2 rather than z, but then the matrix 1/2 B'B rather than B'B would appear, and
it was decided that the problem might be better handled if the form B'B is used.

Let us now state what can be done, from a mathematical programming standpoint,
with this problem if © is constrained.

If B'B is positive definite, z = z (68) is a concave function. Suppose the

constraints on © are of the form

8y ®© <0,r=1,2, ..., m

8, 20

i ,i=1,2,.oo,p

and that g, (0) is a convex function of g for all r.

There is an algorithm available for the solution of the problem: maximize
z (0), where z (6) is a concave function, subject ot the conditions

g, (8 S0 ,r=1,2, ..., m

and 8y 20 ,1i=1,2, ..., p
where the g. (0) are convex functions. The algorithm is described in reference
[4] and offers a complete solution for this particular case. It should be noted
that the restriction on © is of a type that is rather common; that is, very often
the constraints are convex functions in ©, so that a rather broad class of problems
may be solved using the algorithm.

The more restrictive requirement, for the Taylor's series approach, is that
z (0} be a concave function (equivalently, that B'B be positive definite).
Recall that B is determined by the choice of 0*., While o* was chosen so that it
satisfied the original constraints on 6, we are not assurred that this choice will

force B'B to be positive definite; and in fact it does not.
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We now propose an approach to the solution of the problem which we believe
has much potential value. We propose simply that we utilize the requirement of
the algorithm, that z (©) be concave, as an additional restriction; not on 9, but
on our choice of &*. 1In other words, we force z (6) to be concave by choosing as
an initial vector a ©* such that B'B is positive definite. Equivalently, we have
constructed a function z (0), which we must maximize, and we simply require it to
have a form which possess a unique maximum; certainly a reasonable requirement.

Then, if the constraints on © are convex, the algorithm of [4] may be used
for a first iteration (a solution to the approximate problem). This yields a
first estimate é, which then becomes the choice of ©* for a second iteration, and
so on.

As one can see, a rather large class of problems may be solved using this
procedure. The method is at present only in its first stages of development, as
it remains to prove that it will always converge to a solution of the original
problem, or else to find a set of conditions that will guarantee convergence.
Certainly, in the unrestricted case, such conditions are available (references
[1] and [2]), leading us to believe that they also exist in the restricted case.

The Hartley-Hocking algorithm (reference [4]) has been recently programmed for
computer by L. Claypool of the Institute of Statistics, Texas A&M University, and

the program is now available for our use.
AN EXAMPLE PROBLEM

We will now demonstrate a problem of this type for which a solution was
obtained. Since the use of the Hartley-Hocking algorithm is only feasible on the
computer, the example is stated in such a way that a solution may be obtained with~
out the algorithm, while still illustrating the utility of the Taylor approximation
and the requirement of positive definitemess. Actually, the problem is somewhat

more restrictive in that an equality constraint rather than an inequality was
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applied to ©. From a mathematical programming viewpoint, an equality is more
restrictive than an inequality, but from a classical viewpoint it simplifies the
problem somewhat. We expect, of course, that the cost estimation problems will
involve inequalities.
Let us now attempt to estimate the parameters for the function
v = 8,8, T+ee 1,

subject to the conditions

4
I 8, =3,
j=1 3
and ej 20,1=1,2,3,4 ,

where we have the following observed data:

i Xy ¥4
1 0 1.25
2 1 1.00
3 2 .97
4 3 +56
5 4 1.05
Then
Xi Xi

£ (xi; Q) = 8,8, ~ + 9364

. Xy
fl (xi, e) 92

£, (x5 ©) = x,8/0, X1
.y =g ¥
f3 (xi, Q) = 8,
. @) = x4-1
£, (xi, 0) xiesﬁu i .

First of all we ignore the constraints and find an "intuitive" solution (this was
done by observing the function and making the conjecture that data point number 1
might be the most accurate observation and that point number 5 would be most
"sensitive"). What we are attempting to do, of course, is to arrive at a feasible
0%, our initial vector. Actually we simply look for a ©* which satisfies 211 the

conditions we impose and which does us the favor that the sum of squares of
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deviations is small, suspecting that the © for which the sum of squares is
minimum will be in the neighborhood of ©*. These considerations lead to

.53
8= }1.18

.72

A .

Adjusting 8 slightly, we arbitrarily decide to choose ©* so that

.56
o* = 11.21
.76
Y}

o~

Observe that i*j = 3, and that ej* 2 0 , so that the constraints on 0 are
satisfied by g*. A simple calculation assures us that B'B is positive definite,
so we are ready to begin the first iteration.
In the notation of the general problem, we find
A' = (1.32, 1.03, .99, 1.07, 1.24)
O*' = (.56, 1.21, .76, .47)
12.31 15.51 2.17 3.53
B'B = }15.51 23.98 1.01 3.89
2.17 1.01 1.28 .58
3.53 3.89 .58 1.43
2[y' - A' + 0%" B']B = (56.46, 78.44, 7.15, 15.29) .
We may now form our function z (6), which is written out in full below.
z (©) = 56.466l + 78.4492 +7.158; + 15.298,
- 12.310,% - 23.980,° - 1.280.° - 1.430°
- 31.026162 - 4.346193 - 7.06619u
- 2.020,6, -7.780,8, - 1.166,0, .
Since we have the equality constraint 8, + 6, + 6, +6, = 3 , and 6% was
definitely composed of positive elements, we simply ignore the constraint Oj 20
and attack the problem as a classical Lagrange — multiplier problem. If the
solution satisfies 6, 2 0, then the constraint is "imactive". If, however, it

3

does not, then we may reconsider the problem either by the Hartley-Hocking
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algorithm or as a quadratic programming problem. In any event, a method exists
for solving the first iteration.

Fortunately, from the standpoint of hand calculations, the Lagrange-multiplier
approach works, yielding the vector @' = [.53, 1.17, .72, .58] which is now our
estimate of ©'.

Recall now that the vector A exhibits the values of the original function
f (Xi; ©) if a particular 6 is used, let A* denote the value of A when © = ©%  let

A denote the value of A when © = O , and recall that Y is the vector of observed

J

v's.
Then

A%?

[1.32, 1.03, .99, 1.07, 1.24]

~

A!

[1.25, 1.04, .98, .99, 1.07} ,
while
Y' = [1.25, 1.00, .97, .96, 1.05] .

S -~ 2 -
It is apparent that g (y a *)2> r (y, - ai) , or O given an improvement in
ey 1 17 4 H

the sum of squares when compared with o*.

Specifically,
S 2
r ( Yy - ai*) = .0544
i=1 Y
while 3 (y, -a;)” = .0030 ,
121 i i

a significant decrease in the sum of squares.

Notice that we are no longer talking about the approximating functiom, but

are referring to the sum of squares of deviations of the observed from the calcu-

X x
v i i = = v ] = -k = *
lated y's when in 6,9, + 6364 we let 8, eﬁ » 8, =67 , 8 % , o %,

- DIN
>

compared with evaluating the same function when 61 = 51,92 =9, .63 =0;.,0,-= 6
In other words, those sums of squares are in terms of the original problem;

minimize s
i i 1 by; = & 62xi - 8 euxilz .
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Then certainly the use of the approximation has resulted in a significant
decrease in the sum of squares we originally considered. We anticipate that if
we now begin the problem chosing 9 as the point about which we make the Taylor's
expansion, that 2 decrease in the sum of squares will again be obtained. Hence,
we could either decide that .003 was acceptable as essentially a zero sum of
squares, or else continue with the process until either zero or else no further
improvement is obtained.

As a point of interest, the same problem, with the same function and the

4
same data, was considered when the linear comstraint Bj = 3 was replaced
4 j=1
by the nonlinear (but convex) comstraint § ej2 = 2.5. The question was
i=1

raised as to what effect would be obtained if a Taylor approximation was applied
to the constraint as well as to the objective function. It was found that the
same order of magnitude of reduction of the sum of squares was obtained! The
purpose of that investigation was to attempt to formulate the problem as a
special type known as a quadratic programming problem, rather tham using the
more general convex programming approach. This leads to some even more interest-
ing conjectures, but it is felt that convex programming is the more fruitful

avenue of approach to the general problem.

PROPOSED FUTURE RESEARCH: CONCLUSION

The areas of subsequent research on the general problem will be:

(1) The investigation of the "restrictiveness' of the requirement that
B'B be positive definite.

(2) Conditions for convergence of the iterations to the true solution.

(3) The possibility that the requirement of the positive definiteness of
B'B be used as an additional set of constraints on © as well as 0%,
(This is currently being applied to a different but related problem in

response-surface techniques and appears to be very promising there).

14~




(%)

(5)

(6)

The modification of Hartley's ""Modified Gauss-Newton Method" to allow
for constraints on ©.

The removal of some or all of the approximations. (This is really the
original problem, but is extremely more difficult since, for one thing,
it precludes the use of a compact matrix notation).

A purely geometric approach; only for a special class of problems.

(The analogy is the graphical solution of a set of simultaneous equa-

tions).

This report indicates that progress has been made toward the solution of a

restricted class of constrained estimation problems. The avenue of approach used

here has proved promising and will be pursued. Some specific problems have been

solved ( see also the section of this report where the CER for CIT was derived)

and results applicable to the cost model problem are expected. Specifically, the

area( 3) above can be applied to the fitting of a cubic equation subject to the

restriction that it be a monotonic increasing function (representing a cumulative

distribution function - used in the subjective probability problem being investi-

gated).

In fact, a theoretically sound solution has just been obtained for that

cubic problem. This theory is now being used to construct a usable algorithm

suitable for incorporation into the Hartley-Hocking algorithm.

(1]

(2]
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INTRODUCTION

During the review of Cost Estimating Relationship (CER) work as part of the
cost research grant the recurring problem was that of interaction among the
factors and the resultant effect upon the reproduction of the costs used in
developing the original CER's. It was desirable to use certain functional forms
which were derived through the use of expertise to represent first order effects.
The higher order interactions which were used were convenient and are not the
only ones that could be used.

The important point is the methodology developed. The cost data, the
functional forms, the variables, and the number of parameters and higher order
terms are minor points compared to the concept and the methodology evolved in
this research.

The reference to specific organizations is not critical or significant

. since the development is independent of the work performed by those organiza-
tions. Their work was simply used as a data base in order that the discussion

could be phrased in familiar terms.



ASSUMPTIONS

The procedures and results presented in this report are based on the follow-

ing assumptions:

1.

The lack of fit to the observed data of the CER's developed by Booz-
Allen is due to:

(a) No consideration of "interaction" among the predictor variables.
(b) Subjective weighting of the single-variable "predictors'.

The four variables selected as predictor variables are valid; i.e.,
that Booz-Allen and NASA are in agreement that these four variables can
be used to predict subsystem costs satisfactorily.

The basic premise of Booz-Allen; that the functional form of the CER's
involves natural logarithms of the variables, is preserved.

There is some function of the four variables which represents subsystem
cost, and which can be adequately approximated by a polynomial function

in the logarithms of the variables.

A COST ESTIMATING RELATIONSHIP FOR CIT

The procedure for constructing a CER with a minimum of data will be present-

ed in the form of an example, i.e., the actual construction of the CER for CIT

for subsystems (Structure-Primary).

The basic tool for estimating parameters in the prescribed functions will

be be least~squares, and in fact may be termed "constrained successive least-

squares' for reasons which will become apparent. The minimum of data available

precludes estimating variances of the parameter estimates, so the criterion of

validity of the CER will be the "predictability" of the observed costs by the

CER.



The procedure follows:

(1) Single-Variable Predictors

We make the following identifications:

P
h

SW = Subsystem weight

X = MG = Maximum mission g's

el
(]

ML = Module length

X = NF

Number of flight functions.

Suppose that CIT can be predicted by each individual variable in the form

CITi = Ky In Xy +1), 1 =1, 2, 3, 4.
Applying least-squares calculations to the data, we obtain

CITl = 583 In (X1 + 1)

CIT, = 1,768 In (X, + 1)
CIT, = 1,592 1n (X, + 1)
CIT, = 2,289 In (X, + 1)

Keeping in mind that we are trying to estimate, in thousands of dollars,

CIT, where
5, 016] CIT for Gemini
CIT = }4,730f = CIT for Apollo LEM R
4,812 CIT for Apollo C4&S

we write out the single-variable "predictors" as

X 4,502 X 5, 060] . 4,813 . 4,760
CIT, = 4,612 , cIT, = [3,885| , cir, = |4,422] , cIT, = [4,760
5,357 5,383 5,259 5,029
CIT
6,000 }
\A pa———
5,000 }
®
4,000 |
3,000 | x = predicted cost
2,000 . ® = observed cost
1,000 §
GEM LEM AGEs
2257 2728 9784 1

Figure 1. CITy: Estimated by Weight Only.
) .



The figure above indicates the form of the prediction equations as well as
. their lack of fit to the observed data.

Note that a simple subjective weighting of these 4 "predictors" will pro-
duce an equation similar to that derived by Booz-Allen. Note also that there is
no weighting scheme that would result in an adequate prediction of CIT for
Apollo C&S. The closest we could come to the 4,817 would be 5,029.

(2) Two-Variable Predictors

We now propose to form all possible predictors based on pairs of the four
variables [there will be (g) = 6 such equations] by first forming weighted sums
of the single-variable predictors and then adjusting by interaction-type terms
of a quadratic form. The resulting equations will be second degree polynomials
in the two variables, which begins the construction of the polynomial suggested
in assumption (4).

’ A sample calculation, using variables X, and X2 , follows.

Form CIT = p Cle + (1 - p) Csz » O £p £1 and obtain the constrained
least-squares estimate of p (restricted by ¢ <p <1). This is an attempt to
predict CIT exactly by a weighted sum of CIT, and CIT,. We discover, however,
that it does not do so, but call this a new estimator CIsz. Our caluulation
yields p = .78, so we have

CIT* ,= .78 CIT; + .22 CIT, , and

12

cirs, = [4,625
4,452
5,363 .

Now there is an obvious discrepancy in the actual and predicted costs,
which we try to account for by interaction terms, hypothesizing that
CIT = CIT ,,= .78 CIT; + .22 CIT,+ a In” (X, + 1)
+b1n? (X,+1) +cln (X, +1) In (X,+ 1).

. A least-squares solution for the parameters a, b, and ¢ yields the two-




variable predictor

CIT, = crr;‘2+ 590 1n? (xl 4+ 1) + 5,754 1n2 (x,+1)

12

- 3,708 In (X1+ 1) 1In (X2+ 1.

Similar calculatioms yield the other five two-variable predictors which,

along with the one above, are shown below.

*
CI'].'IZ'= .78 CIT1+ .22 CiT,

CIT 1*3 = CIT 3
CIT * = CIT
14 b

CIT * =
123 CI']?3

CIT * = .03 CIT + .97 CIT
24 2 4

X =
CIT 35 CiT "

After adjusting for interactions, we obtain the final two-variable predictors:

CIT 12°

CIT13=

CIT 1=

CIT 23

CIT 24

CIT 3y

The "predictions"

cn;"z«- 590 In2 (X + 1) + 5,75 1n? (X, + 1)

- 3,708 In (X +1) In (X, +1).

CIT ¥, + 5,312 1n? (X +1) + 38,496 1n? x,+1)
- 28, 630 In (X, + 1) 1n (X + 1).

CIT [, + 1,407 102 (X, + 1) + 22,734 1n? (X, + 1)

-11,330 1n (X il-l) In (X, +1).
*

= CIT,,+ 19,820 In2 (X ,+ 1) + 14,975 In > (X 3+ 1)

23
- 34,559 1n (X ,+ 1) 1n (X 3+ 1).

= CIT ;, - 38,798 1n 2 (X ,+ 1) - 56,646 In2@®,+ 1)

+ 94,605 In (X ,+ 1) In (X ,+ 1).

= CIT §, - 14,534 In2 (X 4+ 1) - 28,912 In ? (X ,+ 1)

+ 41,058 In (X 3+ 1) In (X Lt 1).

of CIT given by these are:

. 4,990 - 5,037 - 5,031
CIT , = 14,7031 , CIT 13= 4,767 » CIT y4,= 4,735 s

12

4,78 4,816 4,832
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r -
. 5,010 . 5,054 . 5,019
Clf,, = 14,728} , CIT,, = [4,735] , CIT,, =4,757 ,
4,818 4,800 4,859
5,016]
which are each trying to predict CIT = {4,730
4,817 .
CiT
A
6,0007%
X = predicted cost
5,000%
¢ = observed cost
4,0007
%
3,000 ) %
2,000
1,000
2757 2728 5000 9784 X
ot =~ o 1
1 A1 T P g

Figure 2. CIT,,: Estimated by Weight and Number of
Flight Functions

Any one of these is a fairly good predictor of CIT. The figure illustrates
the nature of the surface on which predicted costs, as a function of only two
vagiables, will lie. However, we would like an equation which tries to account for
thé contribution of all four variables, since it has been decieed [assumption (2)]
that each is important as a predictor.

(3) Three-Variable Predictors

Continuing the same approach, we form weighted sum s of the two-variable pre-
dictors. Here the weighting restrictions pose interesting but simple non-linear
programming problems, since we have problems of the type: Minimize

2
[ciT - P, CIT,, - p, CIT13 (1 P, - pz) CIT23]

subject to the restrictions o < P, £1,0 = P, £1, 0« p, tp2 < 1. Fortunately

the problem has a simple geometric solution which can be converted to a set
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of logical instructions that can be handled by a computer without recourse to
convex programming algorithms. These sample calculations were done on a desk
calculator to get a "feel"” for the problem; but future CER's are expected to
come from a single computer program incorporating the above procedures.
The results of the calculations are:
(:1'1‘12*3 = .11 CIT,, + .89 CIT23

X =
CIT 91 CIT1“‘+ .09 CITZM

124
* =
CIT13H CIle
* =
CITZSM .84 CIT23'+ .13 CIT2“'+ .03 CIT3M .

At this stage an element of subjectivity enters into the problem; that of
adjusting for three-factor interactions. The data are not sufficient to allow
all possible three-factor interactions to be used, so it was decided to use only

(1n) 3 terms. The final three-variable predictors are then:

CIT123 = CI'rl:;a- .0274 1n3 (ll1 + 1) + .0674 1n3 (x2+ 1) + .5079 1n3 (x3 + 1).
cIT,,, = CIT * + .0281 in3 (x +1) - .8513 1n3 (X, + 1) - 1.0134 103 (X, + 1).
CIT ., = CIT % + .0193 1n3 (X, +1) - 2.1066 1n3 (X, + 1) + 3.9616 1n3 (X, + 1),
CIT23“ = CIngu

These yield the "predictions":

) 5,016 . 5,017 ) 5,017 A 5,016
ctr.,. = la.730} , cfr.. = la.m31]| , cfr = [4.738) , ciTr = |4,730],
123 1gi7] T 12 lalsie]l T 13% 0 |al813 234 47817

which hardly deviate at all from the observationms.

(4) Four-Variable Predictor

At this stage it was observed that a correct weighting of these predictors

must yield CIT = C1T234 , which would ignore X1 completely. This could lead

1234
to an intriguing conjecture (ignore weight?), but would not seem to make sense
practically. It would seem that the more logical approach, to carry our line

of reasoning to completion, would be to weight the hardly distinguishable three-

variable predictors equally, and make a final four-factor interaction adjustment.
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This yizlds

CITTzau = .25 [CIles + CIleu + CITlaq + ansul .
and finally
= * =,
CIT)p3, = CIT %, - <0024 1a (X +1) In (X +1) In (X +1) In (X +1),
where
A 5,016
CIT = 14,731

1234 4,816] .

(5) The CER for CIT

Performing the arithmetic of combining all the previous results exhibits
the CER in terms of the original variables.

CIT ,q, = {2.9172 1n (X, + 1) +732.32 In (X, + 1) +1,232.3 1n (X, + 1)
+ 817.92 1n 2(x1 +1) + 6,438.26 1n 2(1:2 +1)
+ 7,426.32 In 2(x3 +1) +7,523.11 1n 2(x,+ +1)
- 787.33 1n (X, + 1) 1n (X, + 1)
- 5,410.08 1n (X, +1) 1n (X, + 1)
- 14,946.77 In (X, + 1) 1n (X, + 1)
+5,203.28 In (X, + 1) In (X _+1)
+307.94 1n (X, +1) 1n (X, + 1) }
+.0050 1n (X, +1) - .1960 1n 3(X, + 1) - .3997 1n 3(X, + 1)

4+ .7371 1n 3(;‘ +1)

.0024 1n (X1 + 1) 1n (X2 + 1) In (X3 +1) In (Xk +1) .

(6) Discussion of CER and Recommendations

Observe that the part of the CER set off in braces ( {} ) is a quadratic
form in the four variables, and represents an approximation of only second degree
to the theoretical (hypothesized) function which actually yields CIT for any

combination of the four variables. Ignoring the higher degree terms completely




yields the prediction
5,037
4,732
14,824} ,

that 1is, the higher degree terms do not make a large contribution for this range

of the data. If the expected range of future input variable Xl, X, X5 X, is to
be near the range used in deriving the CER, then it may be expected that the
quadratic form only would be a fairly good "predictor".

Such an observation allows us to make the statement that the predictor is
"nice" in the respect that it leads us to no obviously contradictory cost pre-
dictions such as negative cost, maximum cost, etc.

If the quadratic form (ignoring terms of degree 3 and higher in the CER) is

investigated for maxima and minima, the result is that it has a minimum where

X,+1%=exp [-293]<1 X, <o
Xo+12=exp [-84] <1 X, <o
X3+ 1=exp [-98] <1 implying X3 <o ’
Xu+léexp [- 74] <1 X, <o

which is outside the range of feasible data.

The conclusion is that the restricted CER has no maximum within the feasible
range (positive X's) of the data, and the possibility of a 'megative cost" appears
to exist only in the neighborhood of X, = o, X2= o, X3= o, X1+= o, a point of
no interest (except that cost in zero there).

The full (all terms) CER has been investigated throughout the anticipated
range of input variables by simply programming the equation and generating cost
predictions for various combination of the variables.

A discussion of the program and reasons for its use will be found in another
section of this report. The figure below represents graphically the results of
that investigation. It is a three-dimensioned (holding X , fixed at X,k = 8)

contour representation of costs, where the costs are indicated within the flags

drawn at various points representing inputs (X, X2 s X5 ).
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}as
X3
'I' . 4 36 \
24,232°=
. [ 1
| 1% &= 21,5807
L
18,8615 18,818
—_—y
16 :
12
8
) i 7 59,000 _____1.9_.29"19 —_— __]_-mo _."..'_-,_ _}(l
8,505 | fﬁB

@

D P

Figure 3, CIT1234: Fomplete CER, X, Fixed at X, = 8.

While the figuré indicates that no results contrary to common sense were
obtained, the recommendation is that the quadratic form in the CER appears to be
an adequate predictor for CIT for points not too discrepant from the range of
data used in the development of the CER. This would essentially maintain Booz-
Allen's original four v#tiables and logarithmic form of the function, while in-
creasing the degree of the polynomial by onme. |

(7) Comments on the Number of Terms in the CER

The CER is a fourth degree polynomial form in four variables and has 17

terms, arising from the nature of the method used (constrained least-squares) and

~-10-



from the minimum of data that was available for constructing the function.

An analogy can be made with the standard statistical procedure of finding
the degree of a polynomial (in one variable) that adequately describes a set of
data when the actual functional form is unknown. 1In that procedure, a linear
function is first fitted, tested for significance of the coefficient of the first
degree term, and, if significant, a polynomial of second degree is fitted,
tested, and so on until no significance is obtained for the coefficient of the
term of highest degree.

The method proposed in this report utilizes no significance tests because
of the lack of available data. Our criterion for deciding upon the degree of
the polynomial to be used is simply to continue until the data have been fit
essentially exactly and then say that, since the polynomial describes the data
perfectly, we have an adequate fit. However, because of the few data points,
after reaching the stage of a second degree polynomial a decision had to be made
as to what kind of third degree terms would be used, these being 20 different ones
to choose from. Likewise for the fourth degree terms, where there are 29 choices.
These decisions were necessarily subjective and were based only on using terms
which improved the fit. Hence the recommendation that the quadiatic form might
be an adequate predictor (it required no such decisioms).

It should be noted that if it were decided that a fourth degree polynomial
in the 4 variables is desired, and that we should fit a general (all possible
terms) fourth degree polynomial, then 63 data points would be required if standard
least-squares is to be used, since such a polynomial will have 63 different terus.
Even if that much data is available, the estimation task is formidable, requiring
the solution of a system of 63 simultaneous equations in 63 unknowns! In such a
situation it is usually decided to attempt to describe the data with a quadratic

form in the variables. This general form would contain 14 terms, however, so
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standard least-squares cannot be used even here, since we do not have that much
data.
USE OF THE METHOD FOR OTHER CER'S
It appears reasonable to say that the method used in constructing CI'I‘123q
would work for the other desired CER's, given that the original assumptions

are acceptable to NASA.

As an example, a sample two-variable predictor for CDE was calculated, and

yielded
= - 2
CDE12 = 11,019 In (X1 +1) 53,516 1n (X1 + 1)
- 550,805 1n 2(X, + 1)
+ 345,786 1n (X1 + 1) 1n (X.2 + 1),
so that
. 24,2106
CDE , = } 89,235
A2 150,719]
while the observation actually made was
24,185
CDE = 89,205
150,681 ,

leading us to expect the same "goodness of fit" for a CER for CDE based on the
same method.

The procedure will be programmed for computer and, especially if the
quadratic form only is desired, should be a fairly simple program to write (the
logic for the non-linear programming aspect would be quite simple). As soon as
this is done, all the CER's could be constructed, investigated for "reasonable-
ness', and submitted to NASA.

It is felt worthwhile to re-emphasize that the use of only the quadratic
form (a) should lead to CER's with good properties and (b) removes the element
of subjectivity (apart from the original assumptions) because no decisions as

to type of three and four factor interaction need be made.
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USE OF OTHER FUNCTIONAL FORMS: CONCLUSION

It is of course apparent that the method depends on the assumptions made at
the beginning of this section of the report. It must be pointed out that,
given a "free hand" as to the form of the functions used, we may arrive at
functions which predict the observed points closely, and could do so with only
one variable.

For example, we could form

CDE, = 67,403 X, - 6,416 x§ + 155 x: ,
yielding
. 23,652
CDE3 = 88,915
149,393 .

This gives a fairly good fit, and is simply a cubic equation forced through
X3 = 0 and involving only the single variable X, .

It is obvious that an infinity of such functions might be hypothesized for
any one CER; each doing a good job of "prediction".

The objections to this approach are (a) the problem would have as many
"solutions" as there were people to try to solve it, and (b) we would be basing
the form of the function on the configuration of the data rather than on past
experience and consideration of the nature of the costs themselves; a dangerous
practice at best.

By restricting ourselves to a set of assumptions that can be at least

partially justified by experience, we have a rational foundation on which to

build our model.
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COMPUTERIZED EVALUATION OF COST ESTIMATING RELATIONSHIPS

The purpose of the Computer Program is to evaluated the Cost Estimating
Relationships of the form discussed below. The specific CER that will be dis-
cussed is for the initial tooling cost, In this case the variable in the pre-

diction equation are X, , subsystem weight; x_, maximum g's; L module length;

2’
and x,, the number of flight functions,

The predictor or CER developed for the initial tooling cost is:

ITC (xl, X x3, xu J=2,9172 In (x + 1) + 732.32 1n (x3+ 1)+ 1,232,3 ln(x“+ 1)
+ 817.92 1n>I1¢x;+ 1) + 6,436.26 1a 2 (x,+ I)
2
+7,626.32 In" (xy+ 1) + 7,523.11 In° (x,+ 1)
- 7,87.33 1In (x1+ 1) In (x3 + 1) - 5,410,08 1n (x1 + 1)e
*Iln (x, .+ 1) - 14,946.77 1n (x2 + 1) 1n (x3 + 1)
+ 5,203,.28 1In (x2 + 1) In (xq + 1) + 307.94 1In (x3 + 1)
3 3
*ln (x, + 1) + .,0050 1In (x1 + 1) - 0,1960 1n (x2 + 1)
3
- 3997 1’ G, +1) +.7371 In " (5 + 1)
- ,0024 1n (:tc1 + 1) 1In (x2 + 1) 1n (x3 + 1) 1In (xq + 1)
Consideratiin was given to evaluating the ITC predictor for stationary points
analytically, This approach to the problem leads to differentiating with respect
to In (xi +1), i =1,2,3,4 and setting each of the four equations equal to
zero, and solving for the desired variables (x,, X,y Xy, and x4).
The system of equation resulting from taking the partial derivative and
setting them equal to zero becomes:
3(ITC) ~ = 1635.84 1n (:c:1 + 1) - 787,33 1n (x3 + 1) « 5,410,08 1n (xu + 1)
3thxl+ 1)) + ,015 ln? (x1+ 1) - 0.0024 1n (xz + 1) 1n (x3 +1) 1In (xk +1)=0
3(ITC) = 2,9172 + 12,876.52 1n (xo + 1) - 14,946,77 1n (x3 + 1)
alln(x,+ 1)]  +5,203.28 1n (x, +1) - .5880 1n? (x, + 1) - 0.0024 In (x, + 1)e

21ln (x3.+ 1) 1In (x“ +1) =0
]l




a(ITC) = 732,32 + 14,852.64 In (x, + 1) - 787.33 In (x, + 1)
| aflnGxgr 1)) - 14,946,77 In (x2 + 1) + 307.9% In (x, + 1)

- 1.1991 1n” (x3 + 1) - 0,004 In (x, + 1) In (x, + 1) In (x, + 1)=0

3 (ITC) = 1,232.3 + 15,046,22 1n (x, + 1) = 5,410.08 In (x, + 1)
lin(x,+ 1)]  + 5,203,28 In (e, + 1) +307.9 1n (x_+ 1) +2.2113 n® (x, + 1)

- 0,0024 1n (x1 + 1) 1n sz + 1) 1n (xa +1)=20

An analytical solution to this system of four equations for stationary
(maximum, minimum, or saddle) points was not readily apparent. For this reason
an iterative solution to the system of equations was necessary.

A FORTRAN program was written to examine the CER, taking advantage of the
computers speed and accuracy, for any unreasonable behavior. This technique
of examining the CER allowed many more data points to be examined than otherwise
would have been possible,

‘ The FORTRAN program was designed such that all coefficients and data were
loaded on data cards (Standard IBM 5081, 80 column cards), See Figure 2, The
data cards, supplying the values of the coefficients used in the CER, utilize
all eighty columns of two cards and ten columns of a third card, The second

type of data card used utilizes the first forty columns to supply the values of

Xi,

including seventy-two (72) may be used for comment or marking of the data as

i=1,2,3,4 (subsystem weight, etc.). Columns sixty-one (61) thru and

to the type of spacecraft (Gemini, Apollo, etc,).

The program was designed for maximum utilization of the memory of the IBM
7094 so that the program, if necessary, can be expanded to make all calculations
necessary in the development of the CER,

The output of the FORTRAN program lists, first, the values of the coefficients
used in the CER, Secondarily, the program lists the data (xl, X,y Xg, xq) used

for each iteration adjacent to the value for the ITC obtained using the data,
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The listing of the data used for each value of the CER facilitates the in-
vestigation by helping to eliminate error in plotting the points,

It can be seen from the flow chart of the program that other advantages
were obtained by the use and design of the computer program. One feature that
proves useful is that higher order terms of the predictor can easily be deleted
if the quadratic form is an adaquate predictor of costs,

The ability of deletion without changing the entire program contributes
to the fact that the program can easily be used to compare the predictor based
on lower degree terms to the predictor based on the complete predictor equation.

The data used to evaluate the CER was such that the predictor could be
examined over all possible combinations of available and theoritical data., The
theoritical data was designed such that it progressed in logical and convenient
increments from the lowest available data values to approximately two or three
times the highest available data values,

The CER was then calculated for each of these data sets (Xl’ X,y X35 x,)
and hand plotted in a three dimensional contour coordinate system for observation,

" contains an

The section on '"Development of a Cost Estimating Relationship...
illustration of these results,

This type of program should be used as a checkout procedure on each CER
and/or combination of CER's, Checking each mathematical model in this manner
would call attention to the reliability of the CER and the independence of the
CER's when grouped within a model,

The input/output and program are an addendum to this section of the report,
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DYNAMIC PROGRAMMING ALGORITHM FOR DETERMINING 'BEST FIT'

The problem of weighting individual predictors of total subsystem cost in
order to combine predictors of the same value into a single predictor is one
which can be approached by more than one method. One method which was reviewed
as part of the services performed by Texas A&M was that of subjectively weighting
the individual predictors which contained a single independent variable according
to the importance that variable was felt to have on the total cost function being
considered. This particular approach did not produce consistently good results
and did not present a quantitative base for making decisions as to whether the
individual predictors were at fault or the weighting scheme being used. There-
fore, by expanding the problem to (1) one of having any number of terms that
were to be combined into a single function under the constraint that the sum
of the weights used should approximate unity (2) one being further restricted
by a small number of data points (which precipitated the original problem of
only using a single variable predictor for a given type of function and still
have some degrees of freedom associated with the error sum of squares) (3) one
having an inherent flexibility such that consecutive last terms could be deleted
from consideration and still provide the optimum solution without recomputation,
(4) providing a built-in sensitivity whereby the effect of variation in the
weightings could be evaluated and (5) where the minimum sum of squares criteria
could be used as a basis for determining optimum weighting of the terms.

In the dynamic programming terminology the stages correspond to the terms
which are being combined; therefore, it is necessary to develop the recursive
relation of dynamic programming. For example if the actual values are ¥y and
the individual predicted values for the first term is Xy, then the objective is

n

to select some value 8, such that the function - £,(8) = '(el X4 - yi)z is
i=1




minimized subject to 0 = 9, 2 9. Using this same notation scheme, the objective

for a two-term equation is to determine

A

nin n 2
fz(e) =0 < 62 0 [ z (61 xli + ezxzi - yi) ]

i=1
min n 2 2 2 2 2
< <
=0 Sg,%0 [i z . (8, %, 4" + 0%,y + y, 420, x .0, xp
..201 xli yi-Zezxzi Yi]
m n 2 2 2
However, fl(e) = 012 9, 2ol I (8 xy4 - 20 x11 +y5 )]
i =
n 2 n 2 2 2
i= i=1
min n 2 n 2
ofa(@) =026, S0 3z (o,x%x,3-¥) - T ¥y
. e i
j=1 2°& 1,1

n
+ 2 T elxliez Xoq + fl(e -92)].
i=1

It is probably only of interest at this point, but should be clarified for
the next stage of the computation is that the values of elxli are fixed, based
upon the value 91 takes on in order to optimize fl(e' -96,) i.e., some value of
0 < 6; <(6° -0,) which minimizes the error sum of squares in stage 1. Therefore,
in order to denote the fixed values of the previous stage as being different
from the variable values in the cross product term let z,y = elxli . It should

n
also be pointed out that , % yiz is simply a constant.

i=1
| & =o s sef T (o 2 2 2
> (8 =0 =09, [i I, ( 2%y y? - z 1 v,

n
+ 2 £ Z,g ezx21 + fl(e -92)] .

It would be possible to write the general recursive relationship at this point,
however, there is asubtle point that should be illustrated. This will be
accomplished by considering the third stage or third term to be introduced into

the model.
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min < n 2
£0) =0 Sey-0[ I g Brxag + 8%y + O5%gy - v ]

‘ min 2 2

n
=0 <9,<80 [151 (0, x4 +28) x34 0, x5 +20; x4 6, %y
- 28 + 0x2, + 28 o
*13 Vgt 0%,y 2 Xy4 Y3 %314
2 2 2
- 20%,y vy b OX,, - 20x vy tyy) ]
. n 22 2 2 2
However f_ (g) = + + +
> ,(8) (B (elxli 8%,y tYLY20, ,6,,
-20x y, + yz)
3733 °1 i
n 2 n 2 2 2
and - = - .
i E 1 (63X31 yi) N E 1 (93x31 293x31 yi +v1)
min n 2 n 2
. =0 = s - -
s B0 6y 70l Iy Cgrgy =y - I Yy

n

‘ The point that should be noted is that (Glx1 i +6,x,3) is fixed for a given
(6 -03) and this is the computed values of the model through the previous stage
which minimized the error sum of squares for the specified sum of weights
(e, +9,). Note, (8 - 93) = ((-)1 + 62). Therefore, if these fixed values of

(91"11 +92x21) are represented as z244 = (91"11 + 6x,, ) then;

nin < n 2
£3(6) =0 <o, %06l z_ (ogx;; -vy -

+ 2 83Xas Z
154 ¥y I Ys%34 %3i

i

+£,(0 -0,) ]

This type of dynamic programming formulation requires that n additional values of
z44 be carried from stage to stage. It does not require that they be retained
for all previous stages only the preceding one since they are cumulative in nature.

Then s




for the ccmputations of stage s. The n stage recursive relation can be written

as:
min < 2 2
= < < - -
£, () =0 en of (anni ¥4) Iy;” +

8, XniZni
1 i

1

g
[ e I =]

i

+£,_(0-8)] ,n22

In order to compute these values by standard methods it will be necessary
to make © discrete. The increments can be refined to any level necessary in order
to obtain a satisfactory weighting of the terms. This is essentially a one
dimensional allocation problem with minor modifications.

Normally it would be expected that

b
6; however, due to the built-in sensitivity of dynamic programming it may be

3

Gj = 1 would be the constraint on
1

desirable to constrain 6 to a sum greater than 1 in order to determine if certain
downward biases may be contained in the original individual terms. The dynamic
programming solution will provide solutions for all values of 6. Further, it
will also provide solutions for all arrangements of consecutive groupings of
terms with the last term being deleted each time. By ordering the terms according
to their suspected importance with respect to the model being constructed, the
contribution of each added term can be considered for deletion in the reverse
order in which it entered into the calculationms.

A computer program can be provided for this algorithm if it is comsidered

to be of more than passing interest.
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INTRODUCTION

Various methods have been used to estimate the total cost of space programs
at various points during the life of the program, Due to various changes that
are a normal part of major programs, the estimates change with time and the
amount of information available, It is generally considered that the total
program cost estimates approach the actual cost as the program nears the end,
There have been numerous studies to determine the reasons and appropriate ad-
justments that could be made to estimate costs, This study was limited to the
utilization of Gemini data for the extrapolation of Apollo data, However, the
general problem of selecting a cost distribution function over time from among
many as a best fit to a partial cost distribution, and the use of the one
selected to extrapolate the partial costs to a completed cost was considered,

The hypothesis was that a subsystem of a completed project would follow
the percent time vs, percent cost curve of some subsystem of a previously
completed project. The subsystems of the uncompleted project would not nec=-
essarily follow the curve of the same subsystem of the completed project be-
cause of such factors as the amount of parallel development, technological
diffculties, program changes and other similar reasons, Therefore, the choice
of the best fitting curve should be made from among a "population'" of signif-
icantly different curves of subsystems of completed projects, Then the curve
which approximates the available data the closest should be used to estimate
the run-out cost,

There are three basic phases to the estimation of run-out costs in this
method:

(1) The determination of a polynomial to fit each 'population" curve,

(2) The determination of the best fitting curve among the population

-1-




to the uncompleted subsystem data and
(3) The determination of the run-out costs, These phases are shown

on the flow chart of Figure 1,




DETERMINE POLYNOMIAL

FOR EACH OF THE SIGNIFICANTLY DIFFERENT
COMPLETED SUBSYSTEM CURVES, DETERMINE
A THIRD DEGREE POLYNOMIAL THAT BEST FITS
THE AVAILABLE DATA POINTS

DETERMINE BEST FITTING CURVE

FOR EACH UNCOMPLETED SUBSYSTEM,
DETERMINE THE BEST FIT OF THE AVAILABLE
DATA POINTS TO EACH COMPLETED SUBSYSTEM

CURVE AND CHOOSE\THE ONE THAT BEST FITS

DETERMINE RUN-OUT COST

USING THE BEST FITTING CURVE, ANY
COST DATA POINT CAN BE USED TO
DETERMINE THE RUN-OUT COST.

FIGURE 1. FLOW CHART OF RUN-OUT COST ESTIMATION PROCESS
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DETERMINE POLYNOMIAL

The data of a completed project which was availahle to Texas A&M was the
percent time vs, percient cost curves of Gemini, This data consisted of four
intermediate points through which a smooth curve had been drawn (NASA/MSC data).

To obtain an equation of the different curves, a third degree polynomial
was dgtermined to be the best general fit to the curves, The general form of
the equation is:

Fx) =X +Bx%+ x>

To determine the coefficients of this equation, the method of least squares
was used, A set of four simultaneous normal equations, involving summations of
the decimal percent time raised to powers from zero to six and the same summa~
tions except being multiplied by percent cost with the powers ranging from zero
to three, is solved to give the desired coefficients., The more data points
that are used in the computations, the better the fit is expected to be, The
degree of the polynomial could be increased if desired in order to obtain a -
still better fit; however, due to the nature of the real world problem, tests

should be made in order to avoid inconsistent changes in the value of the tangent.

This technique was used to determine the equation and was found to give
satisfactory results,

A method of determining an equation for all the curves had been found, but
now the problem of which curves were significatnly different needed to be re-
solved, Since the curves go through the points (0,0) and (1,1), the curves can
be considered as cumulative distribution curves., Therefore, it is possible
to differentiate third degree polynomials to obtain quadratic density functioms,

If it is assumed that the third degree (or any degree for that matter)
adequately describes the distribution function, then by using the method of

v/



moments a Beta density can be fitted to the polynomial, For example, if the
cubic is obtained of the form Y = AX + BX 2 + cx3 which will be the case if
the curve is forced through (0,0) and (1,1) then the derivative is

Y' = A+ 2BX + 3cX° .
(Note: A, B and C are known constants determined by the least squares fit), The
first moment will be

E(x) = r (AX + 2BX 2+ 3¢cX ) ax

‘0
= ax®e2m’ 430’ 1
2 3 4 o
= A+ 2B+3C
2 3 4

Similarly
E(xD = {)’(sz+ 28X ° + 3¢x") dx

=é+

2B + 3C
3 4 5
The corresponding first and second moments about the origin for the Beta

density can be shown to be ¢ +1 and (g + 2) (a + 1) respectively. Then
at B+ 2 (a+g + 3)(at+pg + 2)

by solving two equations for two unknowns, the two parameters of the Beta density

(wvhich uniquely describes the Beta) may be determined.

at+l =A+2B+3C and (a + 2) (@ + 1) = A+ 2B + 3C
2 3 4 3 4 %
ot B+ 2 (@ + B+ 3) (@ + B+ 2) 3 4 3

However, it should be pointed out that the solution of this system of equa-
tions will result in two pairs of a's and B's. Hopefully, one pair will be
infeasible due to the restriction on a and B as parameters of the Beta density
i.e., a, B>~ 1. 1If this is not the case, then the analyst must make a decision
as to which function best describes his data.

However, it should be pointed out that the first derivative of a polynomial

that passes through (0,0) and (1,1) will qualify as a probability density
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function, It is of no particular consequence, except the comnection with
another section of this report is that the sum of the coefficients of the poly-
nomial used as the distribution function will be equal to unity, In terms of the
example given above, A+ B + C = 1,

For the specific problem of runout costs of Apollo, the Beta density is not
a critical area; however, there was an additional problem of distinguishing which
of the cost distributions are significantly different., This is not a particularly
difficult problem if the number of samples and conditions of independence in these
samples are met; however, due to the nature of the data this is not a straight-
forward application of statistical inference type of test of significance.

Research is continuing in this area.
DETERMINE BEST FITTING GEMINI CURVE FOR APOLLO DATA

The data available for am uncompleted subsystem is given as a cost at a
certain time (NASA/MSC data). From the data, the percent time of the project
is known since the project length is known. What is needed is the percent cost
each of the points represent,

The data points must be tested against each significantly different completed
system curve in such a way as to get the best fit and then choose the one curve
which gives the best fit,

Since the ratios of the cost data points are known, it is possible to place
the first intermediate point at a percent cost of X, With n intermediate data
points of an uncompleted subsystem, the n-1 remaining data points are at a
height k,X, kX,...,kpX (see Figure2).

Using the method of least squares to provide the best fit,

M @02+ (kD4 L+ Fpek)? = mintmm

B




1.00

Y

n
&b
o
(=]
5]
&9
g

g Y3
o~

Y,

Yy

0

0 X, X, X3 Xn 1.00
Percent time

Figure 2. Method of Cost Ratio Determination

Where Y'f Y’z cees Yn are the values of the percent cost of the completed
subsystem at the percent time of the data points of the uncompleted subsystem,
these values are obtained from the derived polynomials of the completed subsystem,

Taking the derivative of (1) and setting it equal to zero to obtain the
minimum, (2) 2(Y,-X) (-1) + ,2 (¥,- kX) ("kz) + 2 (YS— k_X) (-k3) + ...

+ 2 (Yn-an) (-kn) =0

Solving for X;

() X = V) Ho Yo+ k ¥y + ous + kY

2
1+k2+k2+ ... +ky
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By knowing the value of X, the value of the sum of the squares of (1) can be
determined to obtain a measure of fit for the uncompleted subsystem to one of the
completed subsystem curves. Repeating this with each of the completed subsystem
curves gives a measure of fit for each of these curves.

By using this measure of fit, the best fitting curve can be determined by

choosing the curve which had a minimum value for the sum of the squares,
DETERMINE RUN-OUT COST

With the best fitting completed subsystem curve chosen, and the uncompleted
sybsystem data points located, the run-out cost can be estimated.

The method used to choose the best curve placed the data points of the un-
completed subsystem in the appropriate perspective to the completed subsystem,
but each of these points were converted to a percent cost; therefore, each data
point is a percentage of the run-out cost, and any one may be used to obtain a
projection of the 1007 or run-out cost of that subsystem.

Since any point may be used to estimate the run-out cost, the first point
will be chosen for convenience since equation (3) located the first intermediate
cost point at a percentage of the run-out cost, the relationship of the cost
associated with that point to the projected cost is known. Thus, the run-out
cost is the cost at the first point divided by the decimal percent of run-out
cost (X),.

A program which does the complete analysis of cost run-out has been
completed, The data of the completed significantly different subsystem and the
uncompleted subsystem is the only required information, with the estimated run-
out cost as the information provided the user, Program decks will be made avail-

able to MSC.

-8~
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QUANTIFICATION OF EXPERTISE

The objective of this research is the development of a reliable method of
predicting various futuristic cost functions. The data to be used will consist
of subjective evaluations in the form of 'expert' opinion, 'expert' being defined
as an individual whose answers to certain questions can be considered reliable
due to his experience in the area in question. A computer program will be de-
veloped to facilitate the quantification of expertise and to provide parametric
type data upon which decisions can be based.

Some work in this area has previously been dome in this area by the Rand
Corporation. Project Delphi, of the early 1950's, was an attempt to provide
answers to questions pertaining to the ability of the United States to withstand
a nuclear attack. The experiment tried to provide the answers to these questions,
but the data gathered was not subjected to any extensive statistical analysis.

At the present time calculations based upon the multinomial distribution are being
performed, with these preliminary calculations giving favorable results.

Other work which has been done in this area is the PATTERN (Minneapolis-
Honeywell) program which was developed by Honeywell for the Department of Defenses
and subsequently used by NASA. This program utilizes expert opinion to rank
various space programs according to their value from the standpoint of technologi-
cal advance, national prestige, etc.

The research which is to be undertaken differs from these two projects
(Delphi and Pattern) in that it will include the statistical analysis not under-
taken in Delphi, and is not a ranking method as is Pattern.

The problem to which the research is currently being applied is one of
determining percent cost/percent time curves for various NASA programs. The
'experts' being questioned are located aa Marshall Space Flight Center, Hunstville,

Alabama; and the Manned Spacecraft Center, Houston, Texas.
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The progress to the present has consisted of work on the preparation of a
statistical model, upon which will be based the statistical analysis of the data
received. The submission of the first set of questionnaires to MSFC Huntsville
and to MSC Houston has also been accomplished. The first set of forms asks the
experts involved to sketch their ideas on the various cost-time relationships.

The data received from the initial questionnaires will be used in several
ways. The reaction of the experts to the questionnaire is of much interest.

From their reactions, it is hoped that the number of questions to be included in
future questionnaires can be determined so as to yield as much information as
possible while at the same time not being so lengthy that the interest of the
experts is lost. Also, the data returned will provide information on how many
curves should be used in the second set of questionnaires and the specific types
of curves to be used.

The second questionnaire will differ from the first in that pre-drawn
curves will be sent to the experts. The experts will be asked to choose which
of the curves, in their opinion, best describes each specific cost-time relation-
ship. Only one curve can be chosen for each category. The experts will also
be asked for a subjective rating of their confidence in their own answers, and
these ratings will be used to weight the data before analysis. In this way,
the opinion of a judge who is more experienced in a certain area would receive
more consideration than the opinion of judge with less experience.

At this level it is hoped that statistical analysis will give some indication
of the convergence or divergence of the expert opinions. In the cases where this
analysis shows the judges in general agreement or the curve which best describes
a specific cost-time relationship, it will be assumed that the appropriate area
is quantified and the cost category eliminated from further study and data
collection. For those categories where the judges do not agree, questionnaires

will again be sent, this time giving each expert additional information which
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night be of some help in re-evaluating his first answer.

This procedure may still fail to bring the judges into agreement on which
curve best describes each specific category. The opinions may, however, group
around two or at most three values. In this case, it may be concluded that,
for this specific category, the curves are indistinguishable. If one curve is
needed, a new curve could conceivably be generated which would be a weighted
combination of the curves in the majority.

If the judges disagree widely after several questionnaires, it can only be
concluded that the judges have different experience in the area, thereby biasing
the results.

It is hoped that this research can contribute something to the area of
quantification of subjective information. The results of the first questionnaires
indicate a reasonably good and consistent response from the experts contacted.
The form of the questionnaire submitted is an addendum to this section of the
report. Twenty blank graph forms were submitted with the list of cost categories.
These forms will have pre~drawn curves on the next level of questioning and the
expert will simply record the number of the cost category for the applicable

pre-drawn curve.
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ABSTRACT

Due to the tremendous growth in the size and complexity of our
industrial organizations, a need has arisen for scientific quantitative
approaches to the solution of a myriad of complex problems. It has been
the practice in the past to solve production cost and efficiency prob-
lems by use of the standard cost system, but a new technique for the
solution of these problems involves the use of production cost models.
This procedure utilizes the electrical engineer's servomechanism theory
which expresses the variables of a system in some mathematical form
which relates the input to the output of the system.

The models that are most often encountered in a production pro-
cess include the simple block, recycle case, cleanup case, closed loop
case,'and the recycle with a primary loss case. These individual blocks
can then be combined to simulate a complete system. It is also possible
to use this technique for optimizing the profit yielded on a multipro-

duct system.
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I. INTRODUCTION AND PRELIMINARY DISCUSSION

During recent years the phenomenal growth in size and com—
plexity of our economy and our industrial organizations has brought
about an intense need for improved techniques of management and con-
trol of production operations. Executives in industry have seen the
need for a scientific quantitative approach to solve their problems,
problems which have increased to a size such that wrong decisions can
be tremendously costly while the information to make decisions has be-
come a function of a myriad of variables, whose relationships to each
other are quite complex. Highly complex business or industrial organi-
zations are made of many small units or components, each of the units
performing a specific duty which contributes in a small manner to the
existence of the organization. When all the components and their in-
teraétions are integrated together the result is the organization.

In the past the cost of a product, the efficiency of the sys-
tem producing the product, and the profits realized on the product were
usually calculated using the standard cost system. Standard costs have
been defined as "a forecast or predetermination of what costs should be
under projected conditions, serving as a basis of cost control and as
a measure of productive efficiency when ultimately compared with actual
costs. The volume level and the set of circumstances under which the
product is produced must be carefully determined and the underlying de-—
tails spelled out. Until these requirements have been met, no attempt
to develop standard costs should be made; in fact, no steps can be taken

in that direction because there will not be any standards."




Standard costs were frequently developed after a company or
an industry had extensive experience with historical costs. A detailed
study and analysis of past costs and the modifications of such costs in
the light of current and future conditions provided a background for
the introduction of a system of standard costs.

Ordinarily, a Qimulated system was designed with information
regarding station efficiencies obtained by a best estimate of the pro-
duction manager. Standard times for the labor required on the product
were obtained by motion and time analysts performing stop watch time
studies. Then, by adding in the cost of material and an allowance for
overhead, the projected cost of the product was obtained. The standard
cost system made no allowance for the proportion of the labor which had
already gone into a product unit which was spoiled further down the pro-
duction line. Therefore, it seemed necessary to devise a cost control
system which would account for the feedback of unacceptable units and
the waste of labor performed on spoiled units.

The electrical engineer for years has been utilizing methods which
establish mathematical expressions for the components and their inter-
actions within highly complex electronic systems. The concept of "trans-
fer functions'" and block diagram flow has been especially useful for
solving problems in servomechanism (feedback control) systems. Since
these methods have been found to be so highly successful in the analysis
of electronic systems, their use may yield fruitful results in analyzing
some less technical but just as complex production problems.

Whatever the nature of the many variables in a system, these

variabies should be able to be expressed in some mathematical form




relating them to the system itself. The transfer function is nothing
but a mathematical expression or model of the system as a function of
its variables, i.e., a mathematical expression of the system in terms
of the ratio of the output to the input of the system. This transfer
function provides a method whereby the engineer can set down in mathe-
matical expressions a representation of the real system retaining as
much as possible its many important characteristics. The expression
strives to establish in mathematical terminology most of the pertinent
characteristics of the system.

Let us delve into an analysis of a simple electrical circuit
as an example of the use of the transfer function by the engineer. Al-
through the reader may not be acquainted with the concepts of electri-
city or electronic circuits, the example itself, nevertheless, is simple
enough to show the reader the use of a transfer function. The adoption
of the function to industrial and business systems will follow. Con-
sider the electrical circuit shown in Figure 1.

R

E
in % R2 I‘:out:
L

Figure 1

An Electrical Voltage Divider Circuit




This is called a voltage divider circuit and is composed of

a resistor R1 and a resistor RZ' Let us assume that a certain voltage

Ein is applied to this circuit as shown in the diagram. As the elec-

trical current goes through the components, a certain voltage output
‘isproduced which we call Eout' Thus the transformation of the input

voltage, Ein’ to the output voltage, E , was accomplished by the in-

out

herent characteristics of the R R2 system. Eo is different from

1’ ut

E, by virtue of the effect R, and R, had on E, . This effect is
in 1 2 in

written in the transfer function form, [RZ/(R1+R2)], which is the

mathematical expression of the R,, R, circuit performance on the in-

1* 72
put Ein'

When the input to the circuit is multiplied by the transfer

function expression the result is Eout' Thus

(iﬂput voltage) x (circuit transfer function) = (output voltage)

or
(B, ) * [Ry/(R;+R)] = (E_ )
If the value of Rl and R2 were 100 and 300 ohms respectively,
Eout would equal 0.75 Eiu' Thus, the Rl’ R2 circuit performance trans-

formed the input value of the circuit (Ein)’ to the output value,
(0.75 Ein)'
Now, this transfer equation will be written in more general

terms so that it may be applicable to any physical system.

(input to system) x (system transfer function) = utput of system)

or

(I) x (T) = (0)




To aid in the analysis of overall systems, the engineer utilizes
a block diagram technique to indicate the relationship of the above equa-

tion (see Figure 2). The function (T) transfers the input (I) to some

Input (I) Transfer Output (0)
> Function >

(D

(I) *x (T) = (0)

Figure 2
Block Diagram Representation of
a System Transfer Function Equation
output (0). Input (I) is multiplied by the transfer function within the
block .to obtain the output (0). The use of the block diagram to repre-
sent the transfer equation greatly aids in the analysis of complex sys-
tems as will be shown later in this paper.

A business operation analysis can be developed also by the trans-
fer function block diagram method. Consider the performance of a business
operation to be represented by a mathematical expression or transfer func-
tion "T." The transfer function "T" transforms the inputs to the busi~
ness operation into some output (see Figure 3 for some generalized examples).

Figure 3(a) symbolizes the input to the block as the customer's
money received for a purchase. The input is multiplied by the business
operation transfer function to obtain the output which is profit. The
transfer function in this case could be a function of unit direct cost,

overhead cost, taxes, etc. Figure 3(b) symbolizes the input of a certain




Customer's Transfer Profit
» Function —>
Money for Business
Purchase Operation
(Money) x Transfer function = Profit

Business Operation

(a)
Units Transfer No. of
Function P
of Raw Manufacturing Finished
Material Process Products
Units of X Transfer Fucntion - Number of
Raw Material Manufacturing Process Finished
Products
(b)
Figure 3

General Transfer Relationships

number of raw materials into a manufacturing process. The raw materials
are then transformed into a certain number of finished products by the
process. The manufacturing process transfer function may be a function
of labor, work materials, efficiency, etc.

At this point it may be of interest to note that the meaningful
business ratios that economists and financiers have been monitoring for
years as an indication of what a business is doing are comparable to
the input-output ratios that the engineers monitor by use of the trans-~

fer function to see what electric systems are doing (see Figure 4).




Rales [ ] Profit Assets Profit Assets Sales
> » ——7 > T. b—>
| 1 2 3
T1 = Profit/Sales 'I‘2 = Profits/Assets 'I‘3 = Sales/Assets
(a) (b) (c)
Figure 4

Meaningful Business Ratios

in Transfer Function Terms
Although transfer function techniques can be applied to many business
problems, this paper will concentrate upon the use of the transfer func-
tion to investigate or solve elementary manufacturing process problems.
The true worth of the technique can be seen when investigating complex
systgms. The use of this technique will be developed through the ex-

planation of basic examples.




I1. GENERAL CONSIDERATIONS
REGARDING WORK STATION MODELS
This section of the paper will be devoted to the introduction
and analysis of the individual work station arrangements that will be

most often encountered in a production line process.

Simple Block

The most elementary model is called the '"simple block" and con-
sists of a single work station with units of material entering with
their associated cost, the application of material and labor at th=
station, the efficiency of the station which is the probability of
sending an acceptable unit on to the next station, and the remzinder
of the units which have to be scrapped for a salvage value which may
be e;ther positive, zero, or even negative, i.e., the company must pay
to have the scrap carried away. First the following assumptions are
made.

C = cost per unit entering process

C, = cost added per unit at station

S = salvage value per unit of defective units
P = probability of accepting a unit

K = total cost per unit through station

N. = number of units entering stution

N = number of good units leaving station




\s

I Station p———>

(1-P1x s

Figure 5

Simple Block

Under the assumptions of this model, it can be sesn that the num—
ber of units entering the station multiplied by the station efficiency

equals the number of acceptable units leaving the station, or

No =P NI
The number of units which are spoiled and therefore are sold for the
salvage value are (1 - pl)NI' It can be seen then that the cost per

unit through the station when 100 units are started is

100 C_ + 100 C; - 100(1-p,)S§ C_+C, - (1-p,)S

K = =
8 100 P P,

A method for computing the expected value and the variance of
the cost per good unit through a single work station is shown in Apper-

dix A. The standard deviation of the cost is shown to be o, = (Co + Cl)

K
/fzsyp. Let's look at an example of a station that has a relatively high
probability of outputing a good unit and see just what effect this var-

iance has.
Example: Let p = .99

R R T VA
1’ .99 .99

= (C° +C = .101(C° + Cl)

%k

The standard deviation of K is approximately 10 percent of Co + Cl'
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K
1302 avgprp — —— -~ e e e e —— K avg + 30
cC + C1
K avg “’T;;“
70 avge e m e e e e e - —— K avg - 30
TRIAL

Figure 6

Variance Control Chart

As can be seen from Figure 6, when the process is operating
between + 30 the range of possible costs is large.

The variations in the above calculations are not as crucial
as they may seem since in an actual industrial operation you are not
making oee but n units, and since some of the unit costs will be high
and others correspondingly low, there will be an averaging out tend-
ency. As n becomes very large the total unit costs will zero in very

near the mean.

Simple Blocks in Series

Now let's look at a series of the simple blocks discussed above
and determine the total cost per unit through each stage (or station)
assuming that we start with 100 units. Also assume zero salv;ge value

for simplicity.
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c
\\§1 & \\3
c P, P, Py

—2 | station #1 Station #2 Station #3|[———>

Figure 7

Simple Blocks in Series

N, = PPyP3Ny
The cost through the first stage is

100 C + 100 C cC +C
0 1 0 1

K., = =
1 100 p, P,

The cost through the second stage is

100 K1 + 100 02 100[(C°+C1)/P1] + 100 CZ, Co + C1 C2

2 100 Py 100 P, P;P, P,

and, finally, the cost through the third stage is

100 K, + 100 C;  100[(C_#C;)/p;P,+C,/p, 14100 C;  C_ +C; €, . c,

v, 3 3 , )
3 100 p4 100 p, PjPoP3 PyP3 Py

2/Py

With this average cost per good unit through a given stage, one
can assess the buildup of cost through the system. In order to determine
the cost at an individual stage, one has simply_ to subtract the cost
through the preceding stage from the cost through the stage in question.

Now suppose we decide to attack a certain variable in the systemw;
e.g., the labor and material cost at a certain stage or tre percent out-
put of good units at a stage, in order to cut the total ccst of produc-
tion. Which variable should we concentrate on?

Recall that if we have a variable y which is a function of several
other variables (xl, xz, %3’ e Xn) then we have the following rela-

tionships:
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Ay = . Ax +-§1— Ax, + ... + 21—-Ax
1 1 sz 2 axn

C +¢C C
K =..._°___._1. + 2
2 PPy Py
3K, aK, 3K, K, 3K
K, = —— AC_ + == AC, + === AC, + —T— Abp, +T— 4bp
273, "o TaC, 1T, T2 ¥pp LT dp, 2
C 4C
= ac, + -1 ac, + —lﬂcz - g 1 bp,
1P2
_ %™, 2,
2 2 2 P
P1Py Py

Example: Let C_ = $1.00; C; = $.50; C, = $.10; p; = .9; p, = .8

ACo AC aC $1.50Ap1 $1.50Ap2 .10Ap2

1 2
By =T T T T8 9208 “LOCHZ - (.82

= 1.394C, + 1.39AC, + 1.25AC, - 2.328p; - 2.602p, -.164p,

= 1.39AC_ + 1.394C, + 1.254C, - 2.328p, - 2.768p,

2

Therefore, it can be seen that a variation in Py will cause the greatest
corresponding variation in the total unit cost (Kz).

If we could increase P, by .1, the resulting savings would be
$.276 per unit. If we could decrease Co by $.10, the resulting savings

would be $.139 per unit, etc.
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Recycle Case

Thus far only an analysis of a simple system has been made,\a type
of system the engineer refers to as an "open-loop" system, i.e., a system
which has only forward paths or elements. The transfer is always from the
input forward to the output. The derivation of a mathematical model of a
straightforward system can se a simple task. But now let us look into
the derivation of a model for a system described by engineers as a ''closed-
loop" system, i.e., a system that has a feedback path inherent in its opera-
tion. As systems of this type become more complicated with feed-forward
and feed-back loops, the normal mathematics becomes more and more burden-
some. To analyze such complex systems the engineer, using servomechanism
theory, utilizes a method of manipulating block diagrams to investigate
the properties of these systems. This manipulation of block diagrams serves
to simplify the analysis of a coﬁplete system behavior and is used to de-
rive input-output ratios of even very complex systems. To investigate a
production closed-loop system, let us-look at the manufacturing recycle
case. In this system it is assumed thathI units of raw material are sup-
plied to the manufacturing process and out of manufacturing result some
good finished products and some unacceptable or rejected products. If
it is assumed that the rejected products can be reconditioned and sent
again through the manufacturing process, a simple feedback loop is formed
similar to the positive feedback systems in servomechanisms. Thus the
rejects are fed back into a reconditioning process so that they can go
through the manufacturing process where output is again acceptable and
rejected products, and so forth. As can be seen, the reconditioning of
the rejected products is not 100 percent; some units are scrapped going

through the feedback loop.
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Now with the aid of the block diagram technique the recycle case

will be investigated. First the following assumptions are made.

c
o

=

cost per unit entering process

cost added per uait during first stage

cost per unit to rework spoiled units
probability of accepting a unit

probability of accepting a reworked unit

salvage value per unit of spoiled reworked units

total cost per good unit

NI = no. started in system
No = no, good units obtained after processing
N
-Co s Processing Py .
N
P Rework (1—p1)
(1-p )
Salvage
\in

Figure 8

Recvcle Case
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The total cost per good unit follows:

Co + €y + (1-p)ICg - () (A-p IS, - (1-p,)p,C,

% = Py

The number of good units which will be obtained from the system is
N = p. N+ (1-p)p.pN. + (1-p) 2 )% N + ... + (1-p )7 (p ) ;N
o P11 1/PrP11 1’ ‘Pe) PNy i’ P P10y

N /ppNy = 1+ (ppp_+ (-ppPe)? + oo+ e ) M

No/plNI = 1/[1 - (l-pl)pr]

N, = p,N/I1 - (l-pl)pr]

The problem that would confront an executive would be that of deter=-
mining whether or not a reconditioning project would justify the added ex-
pense. ‘One aspect that can be investigated to answer this question is the
comparative cost per unit calculated by the techniques described.

Recall that the cost per good unit (Ks) under the simple block con-

sideration is
Co + C1 - (1—p1)Ss
K =
-] p1

Therefore, for reprocessing to be profitable Ks must be greater than KR’
i.e., K.s > KR. Then
Co + C1 - (l—pl)S8 Co + C1 + (l-pl)CR - (l—pl)(l—pr)SR - (l—pl)prC0

>

Py P

- Ss g CR - (l-pr)sR - prco
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or
< - S + -
CR a pr) R prCo Ss

CR < SR - str + prCo - Ss

CR < pr(co-SR) + (SR.Ss)

Therefore, for reprocessing to be profitabie, the above equation must hold.

Cleanup Case

Often units are dirty or otherwise undesirable after processing
even though they are physically capable of performing thei- intended job.
In this situation there will be a cleanup station which will perform a
cleanup operatior on the unitr and then relay them back into the produc-

tion line.

\&

¢ P

o N Processing 1
(1-py)

Clearnup
Gi-p)
Salvage |
SQ\

Figure 9

Cleanup Case
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Co + C1 + (l—pl)Cc - (l—pl)(l—pc)oR

K =
[
pl + (I’PI)PC

N, = [p1 + (1-py)p N,
Example: C_ = $1.00; C, = $.10; C_ = $.05; S, = $.10; p, = .90; p_ = .80

Regd: (a) Cost per good unit (Kc)

(b) Number of units which must be started if 1,000 units are
required.

_$1.00 + $.10 + (1-.9)($.05) - (1-.9)(1-.8)($.10)
.9 + (1-.9)(.8)

(a) Kc

.9 + .08 .98

= §1.127

(b) 1000 = [.9 + (1—.9)(.8)]NI

1000 _ 1000 _ .
Nt = 9+ .08 98 = 1020 units

Again the problem of justifying the added expense of reconditioning {(clean-
up in this case) is raised. As before,

K > K
s c

C° + C1 - (l—pl)S1 Co + Cl + (1-—p1)Cc - (]-pl)(l-pc)Sc

>

Py P, + (I-py)o,

2
CoPy + C (-pp  + Cypy - (-p)) Syp | [CPy + Cypy - (1-p)C p;
+Cl(1”P1)Pc"(1'P1) Slpl - (l_Pl)(l‘Pc)Scpl
C - ¥ - - > - -
1Pc = 59Pp ¥ CoPe ~ (A-pp)Sip 7 Copy - (1-p)S Py

Copc - (l-pl)slpc + (l-pc)Scpl -Slp1+ pccl

C «
c

P
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P -5, (1- -p )-
Cc<;£ [c°+ c,-5,(1 pl)]+ [sc(l p,) sll
1

Again for cleanup to be profitable the above equation must hold.

Closed Loop Case
In the simple closed loop case a product is processed through an

operation and all parts which pass inspection at the end of the operation

g0 on to the next station, but parts which do not pass inspection are re-

cycled through the operation again. The difference between the closed loop

case and the aforementioned recycle case is that under the closed loop case

it is assumed that no work has to be done on rejected units before they can
' be recycled. It is further assumed under the closed loop case that all units

which are rejected at the completion of the initial cycle will eventually

pass inspection at that station (although some units may require many

passes) and therefore, no units will have to be scrapped for a salvage

value.
/4
C P
= Processing 1 >
(1-py)
Figure 10

Closed Loop Case

Inspection of Figure 10 will show that the number of units started (NI)

. will eventually equal the number of completed good units (No)'

NI = No
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The total cost per good unit follows:

C +cC, - (1-p,)C c
o 1 1" o _ c + —
P ° P

K =

Recycle with a Primary Loss Case

The recycle with a primary loss case is again a model where spoiled
or rejected units are recycled through the‘process via an expense incurring
rework station, but under this case units are recycled due to a rejection
following a second station which has received acceptable units from an ini-
tial processing station. Upon processing completion at the initial stationm,
units are either accepted and sent on to the second station or rejected and
scrapped at a salvage value. At the end of the second station units are
either accepted and sent on to the third station or rejected and sent bacxk

to the start of the initial stage via a recycle station.

c C
\1 \2
C p1

o p2
Station #1 —4 Station #2 p——mu—>
\51 / Cr
PB? Rework

Figure 11

Recycle with a Primary Loss Case

The number of good units through the system:

PP
N = 12 N

1 - pypg(l-p,)
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The cost of a good unit follows:

- €,+€1+P1C5~(1-p )1 +p, (1-py)Cppy (1-p,) (1-Pg)Sp-py (1-P5)p, C 1Ny
PPy

= $.10; cR = §$.15; 8, = $.25; Sg = $.25

FS
[
(1]
(@]
o
L]

$1.00; C1 = $.20; 02

P, < .8; P, = .9; Pg = .7

Regd: (a) The number of units which must be started if it is desired to
get 100 units out.

(b) Cost of producing 100 good units.

@ N = {1- plpR(l-pZ)]No
I P1P)

[l - (BCDA - .9)]100 _ (.944) (100)
(-8)(.9) .72

= 131 units

K = 131[$1+;2+(.8)(.l)—(.2)1.25)+(.8)(.1)(,15)-(.8)(.1)(.3)(.25)

‘b) (.8)(.9)

() 1HA.0)] _ (131)(81.222) -
(-8)(.9) = .72 $222.50

Example of Block Combinations
Let's look at an example which requires the use of a combination
of the blocks which have been discussed. Notice that products may be ex-

tracted from four different locations in the system.
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1]
O

\\fl =1 \52 = .5 \ 3 .
P, = .9 Py . X Py = -9
Station #1 Station #2 Station #3 ‘

V
™
ot

\\54 = .15 C5 = .15
P, = .9 Ps =.9
Station #4 ’Etation #5

©

(a)

_(b)
(c)

(a)

Figure 12
Simulated System Diagram
How many units must be started if 1,000 acceptable finished
units are needed at location #4?
What is the cost per acceptable finished unit at location #47

Determine the mathematical models for the output and cost per
good unit at locations #1, #2, and #3.

First by inspection it can be seen that the probability of
a good unit at location #4 is

P,P,P
1P2P3
T- (mppp, + (17P1P4PsPy

Then, in order to ascertain the number of units which must

be started in order to obtain 1,000 acceptable finished units,
we simply divide the required number of finished units by the
probability of a single good unit; i.e.,

P,P,P
1P2P3
N, + (1-py)p,pPspy| Ng
1 - (l—pz)pr
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_r £:9(9)(.9) _
1000 = [ 2 (1-.9 .9 + 1999 (.9)IN;

1000 = .8729 NI

or NI = 1146 units

(b) Likewise, the cost per good unit at location #4 can also be
determined by inspection; i.e.,

p].[CZ + (I-Pz)cr] p1p2C3
c, + —= + (1-p,)C, + (1-p,)p,C
K = 1 1 - (l-pz)pr 1 - (l-pz)pr 174 17475
P1P2Ps3
T- (ppp, + (17P1IP4PsPs
CODLS+HCD DY (.9)(.9)(.25)
‘- 1+ YD) *Ao D6yt 1) (.15)+(.1)(.9)(.15)

+ (19925

(.9)(.9)(.9)
1-(.1) (.9)

+ (.19

.1+ .505 + .222 + .0487
.8729

K = §2.03 per unit

Thus it is shown that for the costs and efficiencies depicted
in the above illustration, 1,146 units must be started to
obtain 1,000 good units at a cost of $2.03 per unit —
$2,030 total cost.

(c) By inspection, the mathematical models for the required number
of units to be started (Ny) to get a given number of units
out is as follows:

) pl(l—pz)(l-pr) .
o 1~ (l*pz)pr I

N

Likewise, the cost per good finished unit is as folliows:
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pl[C2 + (l‘pZ)Crl

C, +

1 1 - (1‘92)Pr Cl[l - (1'P2)Pr} + pl[cz + (I‘PZ)Cfl
< p,(p,) (-0 ) - p,(1-p,) (1p )
1- (I‘Pz)Pr

The mathematical models for units started and costs at loca-
tions #2 and #3 are found the same way and are as follows:

At location #2:
NO = [(I‘Pl)(l'P4)]NI

¢, + (1-p,)C,
[(-p)) (1-p,)]

K=
At location #3:
NO = [(I‘Pl)Pa(l'PS)]NI

C1 + (l—pl)C4 + (l-pl)pac5
[(l-pl)pa(l—ps)]

K=

It may be interesting now to look at an actual production system
and to see how the concept of cost models can be applied. This system,
which consists of the assembly of semiconductors, is relatively complex
and will serve to show that the application of cost models is feasible
regardless of the complexity of the system. The diagram below shows the
flow of the assembly from station to station with the probability of a
good unit out of a station. The associated labor cost at a station is
shown as L-xxxx and the material cost is shown as M~xxxx. A numerical
solution for the system output and cost per unit is not presented, but

could easily be calculated using the techniques described previously.
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ITII. OPTIMIZING PROFIT
ON A MULTIPRODUCT SYSTEM

Most of our discussion in this paper so far has been restricted
to the determination of system efficiencies and cost per unit of product.
Now let's expand these ideas and apply them to a system which produces
several different products at different locations along the production
line. This situation could occur when, after processing at a station,
some units are drained off and sold, while the remaining units are sent
to the next processing station to be made into other types of products.
This system is used when there is a known market for each product and
the problem that the management must answer is how many raw units must
be started initially in order to maximize the profit on the multiproduct
system. Under these conditions it can be seen that profits on the prod-
ucts can be optimized, but the total cost of production will not neces-
sarily be optimized; i.e., it may be less expensive to produce at volumes
other than the volume which optimizes profit.

This type of problem could be solved by the use of linear or inte-
ger programming, but it will be shown that the problem can also be solved
using the feedback block diagram theory which has been discussed in this
paper. The example below will illustrate the applicability of this meth-
od on a typical production system.

Example:

In the system below assume that there are four different products
extracted from four different locations along the production line. Assume
that we know the consumer demand (N) for each product, the price per unit (P)

which will be charged for each product, and the marketing expense per unit (M)




associated with each product.

any product is worthless.
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Further assume that any overproduction on

o
p1='9 p2=.8

C°=10
~ Station #1 Station #2 >
Pr = .8 /Cr =1
Rework
Y
Pyédit
#3
Figure 14
Simulated Multiproduct System
Let N1 = 1000 Ml = §1.00 P1 = $100
N2 = 1500 MZ = $4.00 P2 = $200
N3 = 2000 M3 = $3.00 P3 = $250
N4 = 300 M4 = §2,00 P4 = $500
No = Number of units started
First we calculate the number of units which must be started to satisfy
the demand for each product.
N = N.,/(1-p,) = 1000/(1-.9) = 10,000 units
oy 1 1
[NZ/Pl(l-pz)(l-Pr)] [1500/(.9)(.2)(.2)]
N = = = 34,965 units
0, 1 - (-pyp, 1-(2)(8)




[N3/P1P2(1‘P3)] B [2000/('9)(08)(005)]

N = = = 46,620 units
0, 1 - (l-p?_)pr 1- (.2)(.8)
N,/PiPyPy [300/(.9)(.8)(.95)] .
N04 = 1_(1_p2)pr= N TR = 368 units

Next we calculate the manufacturing cost tirough the s:stem.

c, + (1-p,)C -] P,P,C

2 2°°r 1¥273
. =N {{(C_ +C,) + F ——
Mfg. cost o{( o T O pll 1 - (I-p,) p_| 1-(1-py)e,

Then the equation for total profit follows:

4 4
Profit = .Z NiPi - z NiMi - mfg. cost
i=1 i=1

Since profit is a linear function of N, we only need to check the profit
at the four volume levels indicated which will satisfy the four required

demands respectively.

Check profit at No = 368 units:

Mfg. cost = 368 {(15) + (.9) E ffgi(;{] . §2>§g;%3 |

= (368)($24.43) = $8,990

M,N, - mfg. cost
ivi

>
H
]
Hh
o
~
1
.M
d
2
i
I~

i=1

Y

PI(I‘PZ)(l‘Pr) (.90.2)(.2)
M2 T No U= amppe, | B2 T G T ey (P00

(No)(l—pl) (Pl) = (368)(.1) ($100) = (36)($100) = $3,600

P,N

(368 (.0429) = ($200) = (15)($200) = $3,000




1'.) 28

P3N3 =N, I:?E:;;YE— (P3) = (368) 34 ($250)

r

= (368)(.0429) x ($250) = (15)($250) = $3,750

PyP,P5 (.9)(.8)(.95)
P4N4 = NO 3:21:5235: x Fa = (368) 84 ($500)

= (368)(.814) x ($500) = (299)($500) = $149,500

Profit = $3600 + $3000 + $3750 + $149,500 - (36) ($1) - (15)($4)
- (15)(83) - (299)(82) - $8990
= $159,850 - $739 - $8990
= $150,121
‘ Check profit at N_ = 10,000 units:

Mfg. cost = 10,000($24.43) = $244,300

PlNl

(10,000/.1)($100) = $100,000

P_N, = (10,000)(.0429) x ($200) = (429)($200) 585,830

272

P_N, = (10,000) (.0429) x ($250) = (429)($250)

3N3 $§107,250

P4N4 = (10,000) (.814) x ($500) = (8140)($500) (300)*($500) = $150,000

Profit = $100,000 + $85,800 + $107,250 + $150.0G0 - (1C00)($1)

- (429) ($4) - (429)(83) - (300)($2) - 5z44,3C0

$433,050 - $4603 - $244,300

$194,147

*
8140 units exceed the demand for produt #4
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Check profit at No = 34,965 units:

Mfg. cost = 34,965($24.43) = $854,195

P.N

1M (34,9651.1) ($100) = (3496)($100) = (1000) ($100) = $100,000

P2N2 = (34,965)(.0429) x ($200) = (1500)(§200)
= (1500) ($200) = $300,000
P3N3 = (34,965)(.0429) x ($250) = (1500) ($250)
= (1500) ($250) = $375,000
P4N4 = (34,965) (.814) x ($500) = (28,462)($500) = (300)($500)
= $150,000
Profit = $100,000 + $300,000 + $375,000 + $150,000 - (1000) ($1)
- (1500) ($4) - (1500)($3) - (300)($2) - $854,195
’ = $925,000 - $12,100 - $854,195

= $58,706

Check profit at No = 46,620 units:

Mfg. cost = 46,620($24.43) = $1,138,927

PlN1 = (1000) ($100) = $100,000
PZN2 = (1500) ($200) = $300,000
P3N3 = (2000) ($250) = $500,000
P4N4 = (300) (§500) = $150,000

Profit = $100,000 + $300,000 + $500,000 + $150,000
-(1000) ($1) - (1500) ($4) - (2000)($3) - (300)($2) - $1,138,927

= $1,050,000 - $13,600 - $1,138,927

- @ = -$102,527
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A graphical plot of the number of units started versus the total

profit shows that the optimum production quantity is 10,000 units.

$200

Total
Profit
(K dollars)

$100
0 ' : i \\* +
10,000 20,000 30,000 40\000 50,000 . .
Started .
-s100 4
~$200 +

Figure 15

Graph of Total Profit vs.
Number of Units Started
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IV. SUMMARY

This paper has presented the use of the transfer function block
diagram method to investigate elementary manufacturing problems. It is
believed that this method has many advantages over the standard cost sys-
tem method of evaluating production costs and efficiencies. The most ob-
vious of these is that it gives a much more accurate indication of the
true cost of a process. There are many instances when management has
chosen one course of action, given the result of a standard cost analysis
when, in reality, another course would have been optimum. We believe that
the use of production cost models will most often give this optimum re-
sult. The methods application to these other problems is left to the

reader.
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APPENDIX A
DETERMINATION OF THE EXPECTED VALUE AND
VARIANCE OF THE COST FOR THE SIMPLE BLOCK MODEL

This appendix presents a proof that the cost per good unit through
a single work station (Ks) is actually (C° + Cl)/p1 (assuming zero salvage
value for simplicity).

First, let x = 1 when a good unit is produced and x = 0 when a
bad unit is produced. Then,

E(RK) = { Kf (K)dK

4
y-1
f(y) = (1-p)’ 'p, wherey =1, 2, ...

which is the probability of one good unit in y trials.

E(K) = E[(C +,Cl)y] = (C, +C) EM)
EG) = § yE = ¥ ya-»¥ b
y=1 y=1
Recall
g = | a-p¥=qa-p § a-pYt
y=1 y‘—'l
= (i- 7 1-p)Y = (1- 1 -
(p)yzo(p) P Ty < g
Then
d P - -
_ggzl.g -7 y(1-p)Y 1 _ 9111321121
y=1 P
Therefore,
E(y) = 21(1-p)"'1p =‘—Pi“§—;2)-‘ﬂ = (-p)[1/p(-1) + (1-p) (-1/pD)]
y=
= (-p)[-1/p - (l-p)/pzl = (-p)y[-p - (l-p)/pzl = (-p) (~1/p2)
= llp
E(K) =

(Co + Cl)/p
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To evaluate the variance of Ks:

2 2
V@R = ELGK - K 7] = EED K, )

= El(c, + cy)? - [(c, + c/pl? = (¢, + cPZEGD) - (€, + c)Prp?

Now we need to know the expected value of y2.

2 2 -1
EG) = [ vy -p) 7 p

y=1
dg(p) . d[Q-p)/pl | _ _1
dp dp p?
aep) % 2 2
7= I me-na-e? - S
dp y=1 P
Now multiply out the terms
o0 2 _ - -] _
I ya-p¥?- § ya-p¥?- —33
y=1 y=1 p
1 v 2 -1 1 ° -1 2
i L yap T -5 ] yap) T = 5
y=1 Poy=1 P
T 2 -1 1 2
i L ya»’ - = "3
y=1 p (1-p) P
v .2 -1 2 1
Py'a-p)Tt - - t 5 (1-p)
y=1 P p (1-p)
Therefore,
2 2 1 -p) +
EG) =p[—5 + -7;—-'-{] (1-p) = 25;32)--1{] (1-p)
p p (1-p) p (1-p)

2. 2-2p+ -
By - Z=2te 20
P | 4




Then

vy = (¢, + cp? 1@p)/e® - 1671 = (¢, + cp? 1a-p)/p)
or

og = (€, + Cl) v1-p/p

35
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APPENDIX B
DETERMINATION OF THE EXPECTED VALUE AND VARIANCE
OF THE COST FOR THE SIMPLE BLOCKS IN SERIES MODEL
In Appendix A it was shown how to calculate the expected value
and variance of the cost per good unit through a single work station.
In this appendix it will be shown that, although slightly more tedious,
the expected value and variance of the cdst'through a multistage system
can be calculated with the same approach. As an example we will show
that the cost through three stages (K3) is equal to
Co + C c C

1,2 .3

As shown previously, E(KI) = (Co + Cl)/pl' Then,

(C0+C
E(Kz) = E +C )y E(YZ)

E(y,) = Z yzf(y2 2 y,(1- Pz) Pz
y=1

As before, substitution yields

-p,d[(1-p,)/p,] |
E(y,) = ¥, = (-py) [1/p,(-1) + (1-p,) (-1/p,)]

= (-p,) (-1/p2) = 1/p,
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Therefore,
By = co+c1+c 1 =(C +C)/p]+C2
C +C C
= 1+-l
plpz pz
Then,
c, + ¢, [ )
E(K,) = E ———-——+-—-+c +—+c E(y
3 P{P, P, P, P, 3 3
E(y)=2yf(y)="y(lp) p
3 373 L 3 3
y=1 y=1

Substitution yields

E(Y3) = 1/?3

Therefore,

C +C. ¢
E(R,) = |[—L+-2 4 L
3" PP, Py 3 Py

[(co + Cl)/p1p2] + (Cz/pz) + c3 ) co + c1 c2 C3

p3 P1P2P3 P2P3 P3
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Te evaluate the variance of .{(((C0 +C)y, +Cy, + C3)y3}

2
V{(((Co +Cy, +Cy, + C3)y3} = E{[(((C0 +Cy, + Cz)y2 + C3)y3]
2
cC +C C C
o 1+ 2 + _3] }
P)PoP3  PpP3  P3
2
= E[(({C_ + C.)y, + C.)y. +C.)y.]% - e + ©2 + E%]
2222 222 2 2
= E[(C0 +C)) y1y2y3] + E[Czy2y3] + E[C3y3]
+ E[2(C + C1)¥1¥,¥5C,¥,¥51 + E[2(Cc + Cl)y1y2y3C3y3]
c, + cl)2 c§ c§
+ E[2C)y,y4C3y3] - —53 t3237 "2
PPyP5 PPy Py
) 2(c_ + €, (C,) i 2(c_ + €, (Cy) i 2€,C,
2 2 2 2
P;P,P; PP,P; P,P;
2 2 2 2 2 2
= (C +C.) +C + C —2
o "1 4 4 4 2 4 4 3 4

(2-p) (2-pp)° (2-p,)

2

(2-p)) (2-p,) (2-py)?

+ 2(C+C))C, — % z  t2(C HCC 2 A
P P P,y Py L) Py
2 2 2 2
' 20.c (2—p2) (2—p3) ) (C°+C1) c, __fé._ 2(c°+cl)c2
2°3 7 2 A 2 2 2 22 2 2 2
P2 P3 P1PoP3 PyP3 P3 PyPyP
-2(C#¢)C;  2C,C,
2 2
P,P,P3 P,P3
2 2 2
) [@-p? @2p)? (2-p,)2 2 | @p)? (2-py?
o™ 1 2 ¥ g e_2 2 3 )
222 2 2 2 2 2 2 2 -
p1p2p3 P] P, P3 PyP3 Py P3
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2 2
2 [-py? 2(C +C,)C, [ (2-p;)(2-p p° (2-p,)
L 3 c L I Y L 1 ¥
2 2 2 2 22
Py | P P1P5P, P,PyP3
2(c+¢0¢, | @pp)2-p? | 2., | 2op,)2p)?
. o 1'% 1 2 3’ 4l T2t Py ¥

2 2 2 2




